Pacific Islands - Online Climate Outlook Forum (OCOF) No. 88

Country Name: KIRIBATI

TABLE 1: Monthly Rainfall

Station (include data period)	December 2015								
	October 2014 Total	November 2014 Total	Total	33%tile Rainfall (mm)	67%tile Rainfall (mm)	Median Rainfall (mm)	Ranking		
Beru (July1932-Nov2014)	8.4	0.5	-	103.3	395.3	213.0	-		
Butaritari (July1931-Dec2014)	333.8	81.1	75.9	758.0	1115.0	954.5	3/76		
Kanton (Sept1937-Jun2014)	-	-	-	74.3	182.6	127.7	-		
Kiritimati (Jan1921-Nov2014)	3.9	64.5	-	256.9	389.0	321.3	-		
Tarawa (Jan1950-Dec2014)	128.9	38.6	313.5	339.5	812.0	558.8	48/65		

TABLE 2: Three-monthly Rainfall October to December 2014

[Please note that the data used in this verification should be sourced from table 3 of OCOF #83]

Station	Three-month Total	33%tile Rainfall (mm)	67%tile Rainfall (mm)	Median Rainfall (mm)	Ranking	Forecast probs.* (include LEPS)	Verification* (Consistent, Near-consistent Inconsistent?
Beru	-	131.0	330.0	217.4	-	7/ 60 /33 (60.4)	-
Butaritari	490.8	486.1	729.0	564.0	26/72	16/ 47 /37 (43.9)	Consistent
Kanton	-	29.9	86.7	41.9	-	23/ 45 /32 (40.2)	-
Kiritimati	-	24.3	70.0	46.7	-	24/ 45 /31 (33.2)	-
Tarawa	481.0	250.3	554.4	328.6	41/65	9/ 62 /29 (56.9)	Consistent

<u>Period</u>:*below normal/normal/above normal

Predictors and Period used for October to December 2014 Outlooks (refer to OCOF #83):

NINO 3.4 SST Anomalies extended June- August

^{*}Forecast is <u>consistent</u> when observed and predicted (tercile with the highest probability) categories coincide (are in the same tercile).

Forecast is <u>near-consistent</u> when observed and predicted (tercile with the highest probability) differ by only one category (i.e. terciles 1 and 2 or terciles 2 and 3).

Forecast is <u>inconsistent</u> when observed and predicted (tercile with the highest probability) differ by two categories (i.e. terciles 1 and 3).

TABLE 3: Seasonal Climate Outlooks using SCOPIC for February to April 2015

<u>Predictors and Period used</u>: Nino 3.4 SST Anomalies extended (Nov-Dec)

Station	Below Median (prob)	Median Rainfall (mm)	Above Median (prob)	LEPS	Hit-rate
Beru	13.2	213.0	86.8	43.1	76.0
Butaritari	31.3	954.5	68.7	14.9	73.0
Kanton	26.5	127.7	73.5	18.4	64.6
Kiritimati	26.8	321.3	73.2	20.1	66.1
Tarawa	29.9	558.8	70.1	21.4	73.4

Station	Below Normal (prob)	33%ile rainfall (mm)	Normal (prob)	66%ile rainfall (mm)	Above Normal (prob)	LEPS	Hit-rate
Beru	5	103.3	22	395.3	73	41.1	56.0
Butaritari	13	758.0	38	1115.0	49	18.9	58.7
Kanton	24	74.3	12	182.6	64	17.6	50.0
Kiritimati	16	256.9	24	389.0	60	21.1	51.6
Tarawa	10	339.5	43	812.0	47	22.2	60.9

TABLE 4: Seasonal Climate Outlooks using POAMA2 for February to April 2015

Station	Lower Tercile (prob)	33%ile rainfall (mm)	Middle Tercile (prob)	66%ile rainfall (mm)	Upper Tercile (prob)	
Tarawa	5	329	47	811	48	
Kanton	6	65	73	191	21	
Tabuaeran	5	296	13	548	82	

Summary Statements

Rainfall for December 2014:

December rainfall was *below normal* for Butaritari and Tarawa. Butaritari rainfall ranks 3 over 76.

Accumulated rainfall for October to December 2014, including outlook verification:

October to December rainfall was normal for Butaritari and Tarawa.

Outlook verification for both stations was consistent.

Level of skill for both was exceptional.

Outlooks for February to April 2015:

1. SCOPIC:

The most likely outcome for all stations is *above normal*. Confidence in the outlook is high to exceptional.

2. POAMA:

The most likely outcome for Tarawa and Tabuaeran is above normal except for Kanton which favours *normal* rainfall.

NB: The X LEPS % score has been categorised as follows:

 $Very \ Low: \ X < 0.0 \\ Low: \ 0 \le X < 5 \\ Moderate \ 5 \le X < 10 \\ Good: \ 10 \le X < 15 \\ High: \ 15 \le X < 25 \\ High: \ 15 \le X < 10 \\ High: \ 15 \le X < 25 \\ High: \ 15 \le X < 25$

Very High: $25 \le X < 35$ Exceptional: $X \ge 35$